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Fuel composition affects many technical 
targets/barriers
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TimelineTimeline

Jan-99 Jun 99 Jan 00 Jun 00 Jan 01 Jun 01 Jan 02

Program Started

1st Long-term test on gasoline-
like fuel completed

Studied effects of 
major gasoline components 

Sulfur tolerance of 
Pt catalysts determined

Studied sulfur effects on 
Ni, Co, Ru catalysts

Completed testing on 
3 refinery feedstocks

Determined short-term
effects of detergent surrogate

Jun 02 Jan 03

Complete study of 
binary systems on
 Pt catalyst

Completed short-term
tests with antioxidant additive

Testing on ternary 
systems

Jun 03

Testing binary systems
 on advanced catalysts
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Experimental approachExperimental approach

• Determine product gas composition 
dependence on temperature and 
space velocity using a microreactor 
( relates to targets for reforming 
efficiency, and GHSV) 
• test minor components, additives, 

and impurities as isooctane solutions
• test blends of fuel components
• test real-world fuels from refineries

• Long-term testing (1000h) 
• determine poisoning, long-term 

degradation effects

• Determine product gas composition 
dependence on temperature and 
space velocity using a microreactor 
( relates to targets for reforming 
efficiency, and GHSV) 
• test minor components, additives, 

and impurities as isooctane solutions
• test blends of fuel components
• test real-world fuels from refineries

• Long-term testing (1000h) 

FuelFuel

• determine poisoning, long-term 
degradation effects

OxygenOxygen
SteamSteam

Mass-specMass-spec
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Additive and impurity studiesAdditive and impurity studies

• Phenol used as surrogate for hindered-phenol 
class of antioxidants

• Ethanol used as oxygenate additive
• Pyridine used to investigate effects of N-

containing heterocyclic impurities
• Benzothiophene used to investigate S effects
• Held O2:C ratios constant at 0.42
• Held H2O:C ratios constant at 1.4
• Varied temperature and GHSV
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Antioxidant had little effect on H2 yield from 
isooctane reforming at high temperature and 
GHSV < 50,000 h-1
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heavier cracking 
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Pyridine decreased H2 yields substantially 
under most conditions
Pyridine decreased H2 yields substantially 
under most conditions

• 50 ppm pyridine 
decreased H2
yield from 
isooctane by 
>10% over most 
of the parameter 
space 
investigated
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Ethanol decreased the rate of reforming of 
isooctane at low temperature
Ethanol decreased the rate of reforming of 
isooctane at low temperature
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• First-order rate 
constants for decay 
of C4 species for 
isooctane-ethanol 
mixtures are less 
than those for pure 
isooctane  when 
corrected to the 
average catalyst 
temperature
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Long-term tests suggest sulfur affects Pt 
sintering
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• EXAFS analysis of catalysts 
after reforming  suggests 
sintering is more prevalent 
when S is present 

• Fresh sample Pt-O distance 
and adsorption energy 
match that for PtO2

• Large shift in adsorption 
energy and Pt-O distance for 
sample with S indicates no  
PtO2 present. 

• Sample with S indicates 
larger Pt-Pt coordination 
number 

• EXAFS analysis of catalysts 
after reforming  suggests 
sintering is more prevalent 
when S is present 

• Fresh sample Pt-O distance 
and adsorption energy 
match that for PtO2

• Large shift in adsorption 
energy and Pt-O distance for 
sample with S indicates no  
PtO2 present. 

• Sample with S indicates 
larger Pt-Pt coordination 
number 

Sample Shell N R (Å) ∆E (eV)
Fresh Pt-O 6.0 2.07 0.1
Used - no S Pt-O 1.0 2.14 0.4

Pt-Pt 9.6 2.78 0.0
Used - S Pt-O 1.4 2.29 10.8

Pt-Pt 12.0 2.76 0.2
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Aromatic or naphthenic components decreased 
H2 production at high GHSV or low temperature 
regardless of catalyst
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• Observe decreased H2 production at low temperature and high 
GHSV due to slower kinetics for paraffin reforming with 
mixtures for Pt catalyst and bimetallic catalyst

• Effects are reduced in magnitude and shifted to lower 
temperature for more active catalysts
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Ternary blends indicate complex relationship 
between composition and performance
Ternary blends indicate complex relationship 
between composition and performance

• Dependence of 
hydrogen yield on 
methylcyclohexane 
content in blends of 
isooctane, xylene, and 
methylcyclohexane was 
found to be highly 
nonlinear 0
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Refinery streams high in naphthenic 
components reformed poorly
Refinery streams high in naphthenic 
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Paraffinic fuel provides 
good H2 yield over a 
wider range of 
temperature and GHSV
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Long-term testing of  gasoline shows 
problems developed after ~600h on-line
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Long-term Performance of KAM-33

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700

Time (hours)

m
ol

 %

600

650

700

750

800

850

900

Te
m

pe
ra

tu
re

 (°
C

)

hydrogen CO CO2 methane
hydrogen + CO Ttop Tbottom

Benchmark 
Fuel + Sulfur

Refinery Fuel



Argonne Electrochemical Technology ProgramArgonne Electrochemical Technology Program

Main difference between Refinery blend and 
benchmark fuel is the size of the chains/rings
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ConclusionsConclusions

• Fuel composition can have substantial 
effects on reforming

• Fuel components compete for reaction at 
catalyst sites

• Kinetic rates decreased when more 
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Future WorkFuture Work

• Have initiated testing of gasoline plus 
commercial additives in engineering scale reactor
• Liquid injection capability which allows for delivery of 

high molecular weight polymeric additives
• Investigate reforming of binary/ternary mixtures 

with advanced catalysts
• Investigate effects of additives with advanced 

catalysts
• Investigate long-term effects of antioxidant 

additives and heterocyclic impurities
• Modeling reforming of complex fuel mixtures
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MilestonesMilestones

• Complete long-term testing on detergent surrogates 12/02
• Completed long-term test using secbutyl amine 

• Complete short-term testing of oxygenate and antioxidant 
additive/surrogate  2/03

• Completed testing using phenol as antioxidant surrogate
• Completed testing using ethanol as oxygenate 

• Complete testing of binary mixtures on 2 different catalysts    
6/03

• Completed testing on Pt based catalyst 
• Testing on bimetallic catalyst underway
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Reviewers CommentsReviewers Comments

• … final resolution of the detergent issue will require 
real chemistry and direct injection of liquid fuel into 
the fuel processor to prevent fractionation and gum 
formation within vaporizer

• Have initiated tests in reactor with direct liquid injection 
capability to test commercial detergent additive package 

• Focus on development of fuel 
additives/compositions that can enhance fuel 
processor performance

• We are investigating optimizing fuel composition with our 
industrial collaborators
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CollaborationsCollaborations
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companies
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